(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

FPGA implementation of filtered image using 2D
Gaussian filter

Leila kabbai *, Anissa S ghaierT, Ali Douik* and Mohsen Machhout «
National Engineering School of Monastir, University of Monastir Tunisia
TFaculty of sciences Monastir, University of Monastir-Tunisia
1 National Engineering School of Sousse, University of Sousse-Tunisia

Abstract—Image filtering is one of the very useful techniques
in image processing and computer vision. It is used to eliminate
useless details and noise from an image. In this paper, a
hardware implementation of image filtered using 2D Gaussian
Filter will be present. The Gaussian filter architecture will be
described using a different way to implement convolution module.
Thus, multiplication is in the heart of convolution module, for
this reason, three different ways to implement multiplication
operations will be presented. The first way is done using the
standard method. The second way uses Field Programmable
Gate Array (FPGA) features Digital Signal Processor (DSP)
to ensure and make fast the scalability of the effective FPGA
resource and then to speed up calculation. The third way uses
real multiplier for more precision and a the maximum uses of
FPGA resources. In this paper, we compare the image quality
of hardware (VHDL) and software (MATLAB) implementation
using the Peak Signal-to-Noise Ratio (PSNR). Also, the FPGA
resource usage for different sizes of Gaussian kernel will be
presented in order to provide a comparison between fixed-point
and floating point implementations.

Keywords—Gaussian Filter; convolution,fixed point arith-
metic;Floating point arithmetic;FPGA

I. INTRODUCTION

Convolution has been widely used in computer vision
and image processing, including object recognition [2] and
image matching [3], However, convolution operation typically
requires a significant amount of computing resources [4].
Image filtering is applied as pre-processing to eliminate
useless details and noise from an image. It is produced by
convolution between an image and 2D Gaussian mask. In the
literature, several efficient FPGA implementations of the 2D
convolution operation have been proposed [5]-[9].
Hanumantharaju et al. [10] proposed a hardware architecture
suitable for FPGA/ASIC implementation of a 2D Gaussian
surround function for image processing application which
offers a savings of memory. Barbole et al. [11] implemented
steerable Gaussian smoothing filters on an FPGA platform
based on a VirtexV ML506 using the pipelined approach
and DSP which reduces memory requirements. Talbi et al.
[5] developed architecture for separable and two-dimensional
Gaussian smoothing filters, which was implemented in the
VirtexV FPGA platform. They prove that the first approach
is significantly faster than the second one. In the same year,
Cabello et al. [2] implemented a 2D Gaussian Filter in FPGA
using fixed-point arithmetic and floating point arithmetic,

they found that increasing the kernel sizes, they reduced the
computational costs using floating point arithmetic.

In this paper, a Gaussian filter on an Field Programmable
Gate Array (FPGA) platform will be implemented. We will
focus in the main bloc which is the convolution module based
on the multiplication operation. Thus, the multiplier is in the
heart of the proposed design. For this, the standard multiplier
will be firstly implemented. Then, in order to accelerate
calculus and to minimize resource use, FPGA features will be
used which are DSP (Digital Signal Processor) and RAMs.
Finally, in order to have more precision in image output, a
real multiplier proposed in [13] will be used to implement
the entire architecture. It is a new way to do a multiplication
between two real numbers. Our application is implemented
by two tools such as MATLAB and VHDL, and simulated on
the ISE simulator.

The remainder of this paper is as follows. Section 2
introduces the image filtering algorithm. The hardware imple-
mentation of image filtering is presented in section 3. In section
4, the hardware optimization of convolution module based on
changing the multiplier will be discussed. Experimental results
are given in section 5. Finally, a conclusion will be done in
section 6.

II. IMAGE FILTERING ALGORITHM

Smoothing filters are widely used in many applications
such as object recognition, matching, classification, etc. They
are applied as pre-processing for removing useless details and
noise [14]. We will focus on image filtering based on Gaussian
filter.

A. Gaussian mask

Gaussian filter is one of the most important and widely
used filtering algorithms in image processing [5]. Gaussian
filter (G) is defined in equation 1.

1
Glry) = 5—

—(z®+y?) /20> 1

2mo? € M

where G is the Gaussian mask at the location with coordi-

nates = and y, o is the parameter which defines the standard

deviation of the Gaussian. If the value of o is large, the image
smoothing effect will be higher.

514|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 7, 2016

B. Convolution operation

In general, smoothing can be effected by convolve the
original image I(x,y) of the size h x w with a Gaussian mask
G(x,y) as illustrated in equation 2. It is obtained by computing
the sum of products among the input image and a smaller
Gaussian matrix of the size (3 x 3). A 2D convolution using
a 3 x 3 mask and 3 x 3 input image is illustrated in Figure
reffigl.

h—1w-1
flay)=> > Gli,j)I(x—iy—j) 2)
i=0 j=0
k1 k2 k1 X1] X2 | X3
K[k | k2| x| X4|X5|X6]|= PC
kl k2 k1l X7 X8 | X9

2D Gaussian Mask 3>3 from Input matrix 33 from Quiput matrix

Fig. 1: Convolution operation

III. HARDWARE IMPLEMENTATION OF IMAGE FILTERING

In this section, the proposed architecture design of the
Gaussian filter will be presented.

A. Block diagram of image filtering

Figure 2 illustrates the block diagram of image filtering.
First, the input image and the Gaussian mask are read and
saved by MATLAB. Next, These values are converted into
a vector in a text file extension *.coe using the MATLAB
tool and loaded the text file in block RAM (BRAM). The
text file of Gaussian mask and image is stored respectively in
BRAMI and BRAM2. After that, the convolution operation
is effected between these pixel values of two BRAM (1 and
2) using VHDL tool and saving the obtain results in another
block (BRAM3). Finally, the text file of BRAM3 is converted
by MATLAB tool in order to display the results form an image.
The next step, we defined each block of diagram in Figure 2.

B. Synchronous architecture hardware of image filtering

Figure 3 depicts the block diagram of synchronous image
filtering which contains a set of modules: Control Module,
3 BRAMs (matrix of input image, matrix of Gaussian mask,
matrix of filtered image) and convolution Module.

1) Gaussian Filter
The convolution of an image with a Gaussian mask

¥ 1
Input Image Gaussian Mask
v ¥
_coe file(malab) _coe file(matlab)
] ¥
BRAMN?2 BRAM]1
to store to store
v v
Block convolution (VHDL)
v
BRAM3
to store
¥
Filtred image

v

Fig. 2: Block diagram of image filtering

BRAM3
(filtred image)

Pixel-conv
MX1
reset MY1 PR
’ Control v BRAM1
ck Module v (Gaussian Mask)
SoP fait SoP_in
- Convolution BRA.MZ
Module (Input image)

Fig. 3: Synchronous architecture of image filtering

involves floating point multiplications, which con-
sumes considerable hardware resources. The Gaus-
sian mask size (3 x 3) is presented by the matrix
below by choosing the standard deviation equal to
0.5.

0.0113 0.0838 0.0113

0.0838 0.6193 0.0838

0.0113 0.0838 0.0113

S515|Page

www.ijacsa.thesai.org

2)

3)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Then, it is necessary to convert the floating point
coefficients to fixed integer point coefficients for
hardware implementation of the Gaussian filter. In
the convolution process, each mask values has to be
multiplied with each element of the image and then
divided by a power of 2 [15], [16]. The approximation
of the Gaussian mask is presented by equation below.

3 21 3
G(z,y) = 218[21 158 211
3 21 3

0.0117 0.082 0.0117

= l0.0SQ 0.6172 0.0821

0.0117 0.082 0.0117

Block RAM

In Xilinx FPGAs, a Block RAM (BRAM) is a
dedicated two-port memory that stores up to 36Kb
of data. The FPGA contains many of these blocks.
Inside of each, small logic block is a configurable
lookup table. It is normally used for logic functions,
and it can be also reconfigured as a few bits of
RAM. Several of them can be combined into a larger
RAM which is denoted by a distributed RAM. BRAM
is synchronous, this means that the read and write
operations from and to the memory are based on
the clock input signal. The read and write operations
are also dependent on the read/write enable ports.
In our case, BRAM?2 is used to store the data test
image using .coe file which is generated with Matlab
tool, and a BRAMI is used to store the .coe file of
Gaussian mask, which are then read by the control
module. BRAM3 will save the data filtered.
Control module

The control unit is an important step of the proposed
synchronous architecture. It allows to generate the
address to BRAMSs (1 and 2) and transfers the data
from each BRAM to the corresponding convolution
module for computing the Sum of Products (SoP)
between these values, after that the convoluted value
is stored in BRAM3. The control module is designed
as a Finite State Machine (FSM) simulated in VHDL.
Figure 4 illustrates the Finite State Machine (FSM)
of the control module.

In the first state, initialization parameter will be
affected. Then in state 1, the signal rd-v will be putted
to 1 to access both memories. FSM increments the
counter MY1 and MY2 when the MX1 and MX2
counter are finished addressing a line of image pixel
block (3 by 3) and the same Gaussian block. This
process is repeated the addressing of the blocks, if it
is completed then goes to state 2 if not it returns to
state 1. States 2 and 3 represent two late cycles to
synchronize system signal. After that, it goes to state
4 where the machine puts the rd-v signal to zero in
order to stop the addressing of the two memories and
goes to state 5. In the state 5, the machine tests the
SoP-fait signal, if it is equal to zero then it returns
to the same state, if not it stored the value of SoP-in
a table. After that, it increments the counter one ” ¢
” or ” 7 7 in order to read a new block, if 71 7 is
different to the (length of size image —1) and ” j ”
is different (width of size image —1) then returns to

29 9

Vol. 7, No. 7, 2016

rd v=1
Mx2+# i+3
My2+ | +3
M=xl#3
Myl 3

1#X or #Y

i=X and =Y

Fig. 4: FSM of the control unit

state 1. If not goes to state 6 (end process). Where,
X is the length of size image —1 and Y is the width
of size image —1.
4) Convolution Module

Convolution module focuses on the calculation of the
sum of products (SoP) between pixels in BRAMI
and BRAM?2 for a window of 3 by 3. Equation
5 depicts an example of the convolution module
between Gaussian mask integer and matrix 3 X 3 from
input image.

IV. HARDWARE OPTIMIZATION OF CONVOLUTION
MODULE

The main operation in the convolution module is the
multiplication.

A. Convolution module using standard method

Signal multiplication of 3 x 3 image by 3 x 3 mask will
be done. Multiplier input values are loaded into the RAM
block addresses port registers (the outputs of the RAM blocks
(BRAMI1 and BRAM?2) are the inputs of the multiplier). One
multiplication is completed in one clock cycle, thus the other 9
multiplications will take 9 clock cycles. The partial product of
each multiplication will be summed to obtain the final result.
The final result of the multipliers will be stored also in RAM
blocks (BRAM 3).

B. Convolution module using FPGA multiplier

FPGA devices have dedicated architectural features that
make it easy to implement high performance multipliers.
FPGA devices feature embedded high-performance multiplier-
accumulators (MACs) in dedicated Digital Signal Processor
(DSP) blocks. For high performance applications, DSP blocks
can speedup different operations. Embedded multiplier blocks
using DSP will be used in our Gaussian filter for low cost and

S516|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

speedup smoothing image.

These multipliers are implemented in a combination of DSP
blocks or embedded multipliers and logic resources. DSP is a
multiplication-intensive technology and to achieve high speeds,
these multiplication operations must be accelerated. The base
of many DSP algorithms is multiplication. In this operation,
each element of the multiplier is multiplied by each bit of the
multiplicand. Then, the partial product of each multiplication
is accumulated according to the weight of the partial product,
where the weight indicates the location of a bit corresponding
to other bits.

e Multiplication: Multiple memory blocks produce one
multiplication result every clock cycle. This mode is
useful for high-speed data scaling.

e Sum of multiplication: One memory block or group
of memory blocks produces the sum of multiplication
results.

C. Convolution module using real multiplier

From a practical point of view, using floating point mul-
tiplications to calculate the convolution can consumes consid-
erable hardware resources but it offers more precision and a
good smoothing of the input image. In this section, we will
present the used multiplier proposed in [13]. Hence, if we want
to multiply real coefficients like this example: a = 3,14 and
b = 4,15. We may first define o, and «; which are number
of terms after comma. In our example: o, = 2 and o = 2.
And, we divide a and b into two parts:

X, = 3 and Y, = 14
Xb = 4 and Yb = 15
X : X':=300
— Shift Bloc 10° » 7 2314
Y, Addition
—
X . A X'=400
— Shift Bloc 10 m 7215
—* Addition
Z”ifﬁ Division ,
o 27=130310 L
7"=0310| (/10%%)with ¢ Multiplication
Wik
rest

Fig. 5: Proposed Multiplication architecture

In Figure 5, the first part of a should be multiplied by 10
and b by 10%. To ensure the multiplication we can use the left
shifting function. Then we add the result to the correspondent
second part of a and b, so we will have Z; and Z]. Then
after multiplying these two terms we have to divide the result
by 10(@e*) To implement this division, we can use right
shifting function. The final result is: R = a x b = 13, 0310.

Vol. 7, No. 7, 2016

V. EXPERIMENTAL RESULTS

In this section, simulations and implementation results will
be discussed.

A. Performance Measures

The Peak Signal to Noise Ratio (PSNR) is the most used
parameter to evaluate image quality in the literature [11], [17]—
[20], [22]. PSNR value can be computed by comparing two
images which are original image and filtered image. The PSNR
was used to measure the image quality. A higher PSNR value
indicates that the filtered image contains better image quality.
The PSNR has been calculated as follows;

2552

3

Where, MSE is the Mean Square Error (equation 4) be-
tween the original image (I1(m,n)) and the filtered image (
12(m,n)), with, m and n are pixels of image M N.

M ~ Z Z (I1(m,n) j'g(m,n))2)

B. Simulation results in MATLAB and VHDL

MSE =

In this section, simulation and implementation results will
be done. Figure 6 presents the filtered image by two tools
which are MATLAB and ModelSim-SE (VHDL).*

fitred image MATLAB

original image

filtred image VHOL

Fig. 6: Resulting filtered image in both MATLAB and VHDL

The kernel size 3 x 3 will be conserved and sigma values
will be changed in order to see their impact in the filtered
image. Figure 7, 8 and 9 illustrate the filtered image by the
software (MATLAB) and hardware (VHDL) implementations.
We can deduce that the blurring effect increases proportional
to the sigma value (respectively 0.5, 1 and 1.5).

For different sigma values, Table I resumes the corre-
sponding PSNR of images (in both VHDL and MATLAB).

S517|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

original image filtred image MATLAB

Vol. 7,

filtred image VHDL

Fig. 7: Filtered image with sigma=0.5

filtred image MATLAB

filtred image VHDL

Fig. 8: Filtered image with sigma=1

original image filtred image MATLAB

filtred image VHDL

Fig. 9: Filtered image with sigma=1.5

For sigma equal 0.5, we observe that the PSNR (VHDL)
obtains better result compared to PSNR (MATLAB). So, when

No. 7, 2016

TABLE I: PSNR values for different output images in VHDL

increase sigma, the PSNR value of MATLAB and VHDL are and MATLAB

decreased. Figure 10 shows the comparison between PSNR

values both resulting image in MATLAB and VHDL. Sigma =05 PSNIES%?% A% PSI\IZI;?;;DL)
Sigma = 1 19.8879 20.3760
Sigma = 1.5 18. 0441 19.6098

Normally, if PSNR value is more than 40 dB, this is an
indication that the quality of the image is good. But, if the
image is mean quality, the PSNR value is less than 30 db
which is the case of our selected image. We note that when

C. Simulation results and resources utilization

we vary the sigma value the effect of smoothing increase and Modern FPGA families integrate many features into the
the PSNR decrease. silicon. These features reduce the area required and increase
518|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

30
25 A

20 A B Sigma=0.5

= B Sigma=1

PSMRvalue (db)

Sigma=1.5

PSNRMATLAB PSNRVHDL
Fig. 10: Comparison between PSNR values to both resulting
image in MATLAB and VHDL

speed compared to building them from primitives. For exam-
ples: multipliers, generic DSP blocks, embedded processors,
high speed I/0O logic and embedded memories. To ensure
the correctness of the proposed architecture, the algorithm of
Gaussian filter has been firstly coded and tested in MATLAB
(Version 12.1), then an FPGA implementation was coded in
RTL compliant VHDL and the hardware simulation results
have been obtained using ModelSim (Version SE 6.4) and
synthesized using Xilinx ISE 12.4.

The proposed design has been implemented on Xilinx VirtexV
device. In the proposed work, Gaussian design is generic, thus
it can be upgraded to any size without an appreciable increase
in the hardware. Hence, the functional modules are control
module, BRAM, multiplier and adder. Here, experiments are
performed on image of size 8 x 8 using 2D Gaussian mask of
3% 3. The simulation results of convolution are shown in Figure
11 and device utilization summary of the implementation is
given in Table II, III, and IV.

Figure 11 presents the addressing of the two blocks
(BRAMI1 et BRAM2) and the result obtained by calculation
the Sum of Products (SoP) between pixels in BRAMI1 and
BRAM?2 using VHDL tool.

TABLE II: Performance comparison with the state of the art
implementations

Slices Registers Slices LUTs DSP48Es
Ours 127 176 9
2D [5] 228 2089 6
[23] 369 480 -

Comparing our results to those in [5], we note that we
decrease the number of slice registers by 44.3% and by 65.5%
compared to [23]. Table III compares the results of both fixed
point arithmetic and floating point arithmetic. As we can see,
we decrease the number of slice registers and slice LUTs
comparing to [12].

In addition, we note that floating arithmetic uses more than
fixed one but still little compared to the state of the art and
we should not forget that it gives more precision to filtered
image.

Vol. 7, No. 7, 2016

TABLE III: Comparing fixed arithmetic results to floating
arithmetic one

Slices Registers Slices LUTs
Fixed Arithmetic (ours) 127 176
Float Arithmetic (ours) 138 3080
Fixed Arithmetic [12] 135 209
Float Arithmetic [12] 151 5052

If we increase kernel size we obtain results in Table IV.

As we can see, kernel size have a big influence in design
performances so that area occupation increase by the increase
of kernel size.
Our results outperform those in [12] in term of slices registers
and LUTs by 6% and 15% for fixed arithmetic using kernel
size [3 x 3]. For floating arithmetic and [3 x 3] kernel size, the
area use decrease by 8% and 39% in term of slices registers
and LUTs. It is the same to the other kernel sizes.

VI. CONCLUSION

Hardware implementation of the Gaussian filter is faster
than software one. Thus, using FPGA we are able to process
the filtering at the same time of reading the image. In this pa-
per, we have presented the implementation of two-dimensional
convolution on a Xilinx VirtexV FPGA platform based on a
state machine. We implemented Gaussian filters with different
sigma values. Then we optimized the proposed architecture
using different multipliers. At the first, we used the standard
multiplication ”x” used in VHDL language. Then we explored
FPGA features and DSP blocks. Finally, we introduced floating
point arithmetic. Performances and results show that area and
resources utilization decrease specially when using DSP and
BRAM of FPGA. Also, speed increase comparing to the other
solutions. By using floating point arithmetic the image has
more precision and result seems to be is better.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to BIgX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] DG. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision; 60(2), pp. 91-110, 2004.

[3] L. Kabbai, M. Abdellaoui, A. Douik, New robust descriptor for image
matching, Journal of Theoretical and Applied Information Technology,
87(3), pp. 451- 460, 2016.

[4] L. Rao, B. Zhang, J. Zhao, Hardware Implementation of Reconfigurable
1D Convolution, Journal of Signal Processing Systems, 82(1), pp. 1-16,
2016.

[5] FETalbi, FAlim, S. Seddiki, I. Mezzah, B. Hachemi , Separable Con-
volution Gaussian Smoothing Filters on a Xilinx FPGA platform, In-
ternational conference on innovative computing technology (INTECH),
Galcia, pp.112-117, May 2015.

[6] M.Neggazi, M.Bengherabi, A.Amira, Z.Boulkenafet, An Efficient
FPGA Implementation of Gaussian Mixture Models Based Classifier,
IEEE.International Workshop on Systems, Signal Processing and their
Applications (WoSSPA), Algiers , pp. 367-371.May 2013.

[71 H. Zhang, M. Xia, and G. Hu, A Multiwindow partial buffering scheme
for FPGA based 2-D convolvers, IEEE Transactions on Circuits and
Systems II: Express Briefs, 54(2), pp. 200 - 204, February 2007.

[8] L. Chang, J. Hernndez Palancar, L.E. Sucar, M. Arias-Estrada, FPGA-
based detection of SIFT interest key points, Machine vision and applica-
tions, 24(2), pp.371-392, 2013.

519|]Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

* frest_gs struchuralfck

4 ftest_gs structural reset

+ . fest_gs._structuraljpivel_corw

0" fiest_gs_structurdfr1jym2

fest_gs _structuraljr1/ym2

' fest_gs_struchuraljr 1hmd
frest gs: struchuraljf1fym1
fhest_gs. structuralfrijdata_m1
frest_gs: siruchuralfrfdata_m2 |4

- Prest_gs structuraljr p_conv

* . Pest_gs struchuralfr e v

Vol. 7, No. 7, 2016

Fig. 11: Simulation results of two-dimensional convolution method

TABLE IV: Implementation results for different kernel sizes

kernel size
[3 x 3] [5 x 5] [7 x 7]
Unsigned | Float Unsigned Float Unsigned Float ‘
Slices Registers(ours) 127 138 378 579 546 774 \
LUTs 176 3080 1270 14559 20380
Slices Registers [12] 135 151 1181 583 1687 883
LUTs 209 5052 2296 32557 2626 54988

[9] V. Bonato, E. Marques, G. A Constantinides, A parallel hardware
architecture for scale and rotation invariant feature detection, Circuits
and Systems for Video Technology, IEEE Transactions on, 18(12),
pp-1703-1712. 2008.

[10] M. C Hanumantharaju, M. Ravishankar, D. R Rameshbabu, Design
and FPGA Implementation of an 2D Gaussian Surround Function with
Reduced On-Chip Memory Utilization, IEEE International Conference
on Advances in Computing, Communications and Informatics (ICACCI),
Mysore, pp. 604 - 609, August 2013.

[11] S. Barbole and S. Shah, Efficient Pipelined FPGA Implementation of
Steerable Gaussian Smoothing Filter, International Journal of Science
and Research, 3(8), pp.1753-1758, 2014.

[12] Frank Cabello, Julio Leon, Yuzo lana, Rangel Arthur: Implementation
of a Fixed-Point 2D Gaussian Filter for Image Processing based on
FPGA, Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), Poznan, pp.28 - 33, September, 2015.

[13] A. Sghaier, M. Zeghid, M. Machhout, Proposed efficient arithmetic op-
erations architectures for Hyperelliptic Curves Cryptosystems (HECC),
The International Multi-Conference on Systems, Signals and Devices,
Mahdia, pp.1-5, March 2015.

[14] S. Rashid, S. R. Dixit, A. Y. Deshmukh, VHDL Based Canny Edge
Detection Algorithm, International Journal of Current Engineering and
Technology, 4(2), pp.2277, 4106, 2014.

[15] M. N. Alsharif, Real Time Image Processing for Lane Following, Master
Thesis, 2014.

[16] N. S. Tahiyah, P. Vikramkumar, K. Sridharan, T.Vineetha, J. Arthi,
Very large-scale integration architecture for video stabilisation and
implementation on a field programmable gate array-based autonomous

vehicle, IET Computer Vision, 9(4), pp. 559-569,2015.

[17] B. Sankur, K. Sayood, 1. Avcibas, Statistical evaluation of Image quality
measure, Journal of Electronic Imaging, 11(2), pp.206-223, 2002.

[18] M. Carnec, Critre de qualit d’images couleur avec rfrence rduite
perceptuelle gnrique, Polytechnique de Nantes, These, 2004.

[19] C. Delgeorge, C. Rosenberger G. Poisson, P. Vieyres, Towards a new
tool for the evaluation of the quality of Ultrasound compression Images,
IEEE transactions on Mdical Imaging, 25(11), pp.1502-1509, 2006.

[20] P. Marziliano, F. Dufaux, S. Winkler, T.Ebrahimi, Perceptual blur and
ringing metrics : application to jpeg 2000, Signal Processing : Image
communication, 19(2), pp. 163-172, 2004.

[21] J.L. Olives, Optimisation globale d’un systme imageur [’aide de critres
de qualit visuelle. Ecole nationnale suprieur de !’aronautique et de
I’espace, 1998.

[22] B.Rajan, S. Ravi, FPGA based hardware implementation of image filter
with dynamic reconfiguration architecture, IJJCSNS International Journal
of Computer Science and Network Security, 6(12), pp. 121-127, 2006.

[23] S. Eswar, Noise reduction and image smoothing using gaussian blur,
Masters of Science in Electrical engineering, California State University,
Northridge, 2015.

520|Page

www.ijacsa.thesai.org

